

Competing for your member's business during uncertain times with AI

How well is your credit union positioned?

Can You Hear Me?

- We are audio broadcasting so please plug in your headphones or computer speakers to listen in.
- If your audio is choppy or slow, you may wish to dial into the teleconference:

Telephone: +1 646 558 8656
 Webinar ID: 843 2822 1809
 Passcode: 856887

Slide Link

Today's slides can be found online at: <u>http://bit.ly/2022-07-20-zest</u>

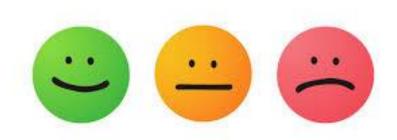
We Encourage Questions

Use the

Questions Box

located on the bottom of your screen to type your comments or questions.

Tell Us What You Think!



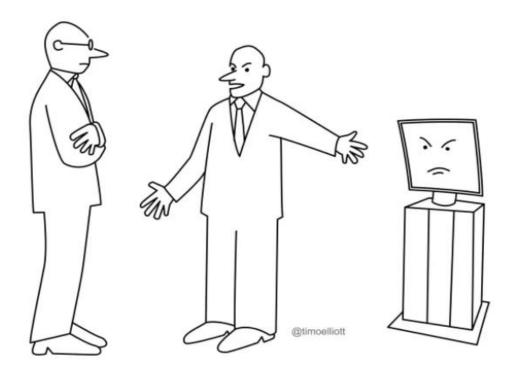
Please take our post-event survey. We value your feedback!

Agenda

- Demystifying AI/ML
- About Zest Al
- Credit Union Objectives and Challenges
- Process in Building Auto Decisioning Model
- ABC Credit Union Model Result Example
- Q&A

Demystifying AI and ML

Automated Decisioning



His decisions aren't any better than yours — but they're WAY faster...

Al decisioning is not....

- Is not a physical robot for the processing of loans
- Is not a technology that allows for continuous learning with a disregard to compliance policies
- Is not technology that is intended to replace human interaction with members

What is AI and ML?

Al (Artificial Intelligence)

The use of faster computing to process massive data and compute more algorithms (better math), to get better insights on data and then act on it.

Machine Learning

Using computing to apply algorithms that are able to learn things from past use cases without programming.

Automation (AI) examples

- Travel booking system 1985 (DOT)
- Airport Check-in Kiosk 1995
- IBM Deep Blue vs Garry Kasparov 1997 (FIDE)
- Phone book replaced by search engines
- Apple Watch with fall detection

Big computers processing tons of DATA with better math and compliant

ZEST

About Zest Al

We are a CUSO and our mission is to make fair and transparent credit available to all of your members.

Our Automated underwriting platform enables Credit Unions to deploy and monitor powerful, compliant underwriting models swiftly and easily to benefit your members.

History of Zest

- Founded in 2009 by Google CIO
- Hired data scientist to build AI Models for lending
- Pivoted in 2016 focusing on banks, implementing customized AI Models with tools for the data scientist
- Worked closely with the regulatory agencies

Credit Union Pivot

- In 2019 Mike de Vere was announced CEO
- Making fair and transparent credit available to the underserved became Zest's core mission
- Strategy was to leverage the technology developed for banks and make Auto Decisioning (AI) available, scalable, and **affordable** for Credit Unions

Zest Credit Union Pivot

- May 2021 Zest began delievering taylored AI Underwriting Models based on specific membership data and portfolios
- Consulting fees were waived for the Proof-of-Concept (POC) model engagement
- Zest revised the pricing model for Credit Unions

Automated Decisioning Early Adopters

- 2021 40+ Credit Unions
- 2021 CURQL Investment
- 2022 Additional 80-100 Clients
- 2022 CUSO of the Year

3 RIVERS	5Point	Addition	
APCU	Altra	blue	¢ COASTAL
	WEST	The First Service	GREATER TEXAS
GreenState	HawajiUSA	ih CREDIT	Redwood Credit Union
Credit Union	TRULIANT		WSECU

Zest's New Clients

MAX Credit Union Copper State Credit Union Proceed Finance **Beehive Federal Credit Union** Achieva Credit Union **Redstone Federal Credit Union** GreenState Credit Union SkyOne Federal Credit Union Commonwealth Credit Union First Service Credit Union

MIDFLORIDA Credit Union PrimeWay Federal Credit Union Alabama Credit Union Mainstreet Credit Union Service Credit Union Community Choice Credit Union Golden 1 Credit Union Verity Credit Union Clark County Credit Union TruWest Credit Union Kinecta Federal Credit Union

Space Coast FirstLight Federal Credit Union **Farmers Insurance Federal** Credit Union Pearl Hawaii FCU Maps Credit Union **Evansville Teachers Federal** Credit Union Credit Union of Texas All In Credit Union Altra Federal Credit Union

Delivering 100's Compliant Al Models

- Zest was the first company to testify before the Congressional Artificial Intelligence Task Force
- The Federal Reserve cites our work, refers to Zest as "gold standard" and hosted Zest on the Fed's podcast
- The OCC adopted Zest talking points in its 2019 report on risks in the banking system (see pg 23)
- Zest has trained top bank examiners at FDIC, OCC, Fed Reserve, CFPB, and FHFA on how to examine ML models
- The National Fair Housing Alliance endorsed our ML underwriting tools to the nation's top bank CEOs

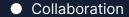
Regulators deem Zest the

" Gold Standard in Machine Learning "

cfpb

Best in adding value to members, creates an innovative solution to a problem, reduces operational costs and increases income for all credit unions.

G CUSO of the year!



Innovation

• Cooperative heart

• Business acumen

Inspirational

Future-focused

2022

Credit Union Objectives and Challenges

Credit Union Core Objectives

Expand Credit & Drive Loan Growth

Increase lending volume and take rates

Safely Manage & Reduce Risk

Reduce loan losses and enable risk-based pricing

Increase Automation & Efficiency

Increase automated decisioning, streamline compliance

Enhance Market Competitiveness

linnovate quickly, identify and respond to trends faster

Drive Fairer Outcomes

Improve fair lending outcomes and lend more inclusively

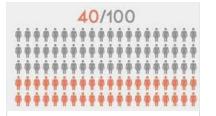
Improve Borrower Experience

Increase member satisfaction

24 Status Que

Pain Poin

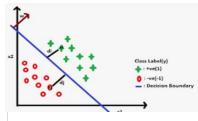
Today's Credit Union Challenges



40%

Of Americans are difficult for lenders to assess accurately

Source: CFPB and Experian



20-40

Year old scoring techniques are out of date

83%

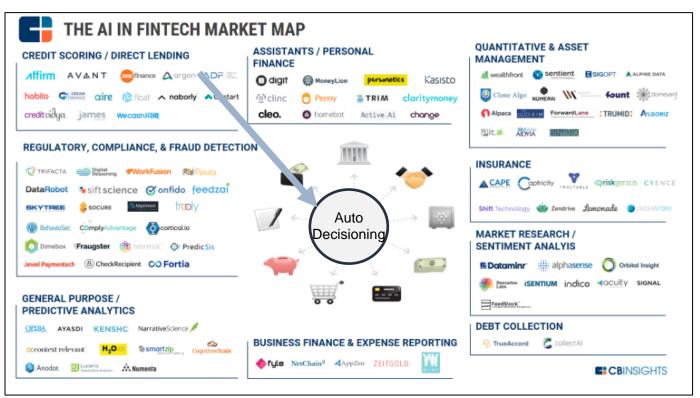
Credit unions take longer than 30 minutes to approve or deny a member loan

Source: Zest NACUSO Survey

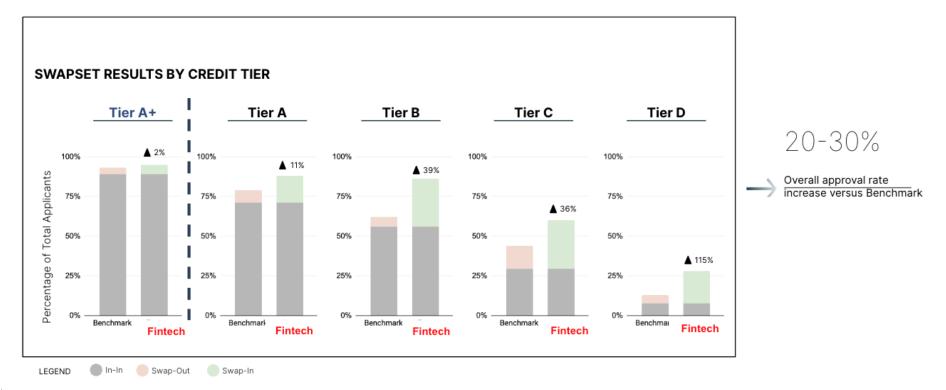
Fintech share of personal loans business

Source: Experian and Allied Market Research

How are Fintechs doing it?



What tiers are Fintechs targeting?

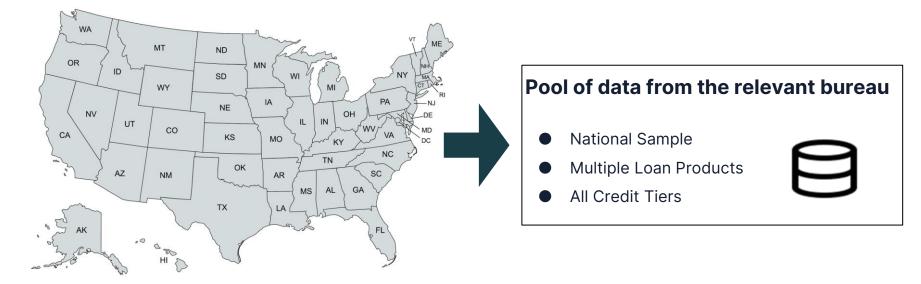


Process in Building Auto Decisioning Models to Compete

Data required to build a model

Organizational Questions									
1. Credit Bureau used:									
 States the Client is operates in (or would life 	e to operate in the futu	re):							
3. Business goal (Reduce losses, increase ap									
4. Current model / scorecard	, , , ,								
a. In house Custom? If yes, Logistic R	regression? App featu	res/non-std	Bureau data	?					
b. Vendor Custom? If yes, Logistic Re	gression? Who? App f	eatures/non	-std Bureau	data?					
 c. Primarily FICO Score 									
 d. Primarily Vantage Score 									
e. Other:									
5. Current LOS:									
Product Specific Credit score distribution (if	custom feel free to cre	ate own mat	rix):						
Product Line Information	Portfolio Level Statistics	Credit Tier Stratification (Use whatever makes sense)							
Direct Auto	Follono Level Stansics	Credit Tier A+	Credit Tier A	Credit Tier B	Credit Tier C	Credit Tier D	Credit Tier E	Credit Tier F	NO SCORE
	Portfolio Total	Superprime	Prime	Prime	Near Prime	Subprime			
FICO/Vantage Range									
Total Applications (#)									
Auto Approvals (#)									
Auto Denials (#)									
Total Approved (#)									
Total Funded (#)									
Total Origination (\$)									
Average Funded Amount									
# of loans charged off									
Average Amount Charged off (\$) per Bad									
Average Value of a Good Loan									
Average Interest rate charged									
Average Loan Term									

Modeling starts with a LOT of data



Preliminary Model

Profile of Current + Future Customers

Pool narrowed down to your:

- Geography
- Specific loan product(s)
- Credit tiers distribution

Built using a large, representative sample of lookalike bureau data

The lookalike sample will mirror the demographics of the communities served today and hope to serve in the future

Using a lookalike sample allows the model to learn from millions of records

Preliminary model performance will be compared to FICO / Vantage Scores

Model optimized & validated with CU specific data

Member historic data included for:

- Validation
- Optimization

Lender specific data

The final model will include bureau sourced loan performance data (including reject inference) & member application data

နိုင်နဲ့ ရေ

Fully compliant MRM including

economic benefit, swap set analysis, fair lending analysis, and deployment plan

Full

Full access to Model Management System

The final model is available within the MMS in 30-45 days following receipt of lenders data.

Status Quo Score vs. Zest Score

ML consistently outperforms traditional methods

Traditional Scorecards /Logistical Regression	Machine Learning / Artificial Intelligence				
Limited to 10-50 variables One-way static	Use 100s or 1000s of variables with ML				
Relationships must be monotonic (move only in one direction)	Can model more realistic, non-monotonic relationships				
Variables must be independent and be uncorrelated	No independence assumption made, no data constraints required				
Results					
Status Quo Charge-Off and Approval Rates Unchanged Same Results	10-25% increase in approval rate, serving the underserved. Allows CU to price competitively in the mid-tiers				
More sensitive to input fluctuation because fewer inputs are used	Models are more stable and less sensitive to changes in variables				

Gain a clearer picture of every borrower

Incorporate more data Often data you already have

corelation

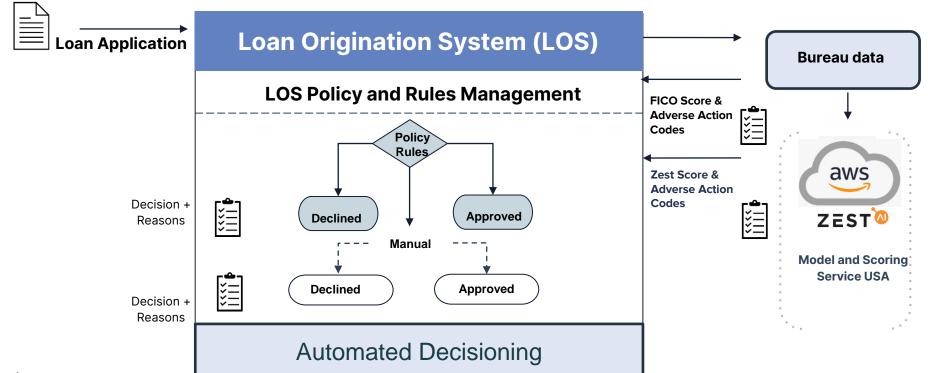
Model more variables Hundreds of variables and interactions boost accuracy and resiliency

DD

Swap risky borrowers for good ones Custom scores and analyses boost performance

Current Process		Automated Underw	utomated Underwriting			
FICO score 760 APPROVED	# accounts owned # late payments of 30-60 days # new credit accounts # years credit history # credit mix	FICO score 760 APPROVED	 # accounts owned # late payments of 30-60 days # new credit accounts # years credit history # credit mix % of trades reported last month 			
FICO score 640 DENIED		FICO score 640 APPROVED	# of loans never delinquent Overall balance to credit amount Present status on all trades \$ total available credit limit Maximum single balance			

Integrate Model with your LOS



Zest is Compliant

FCRA

Legislation passed in 1970 outlining rules for credit reporting and information management

ECOA Reg B

Legislation passed in 1974 barring discrimination in lending based on protected classes

SR 11-7

A supervisory letter from the Federal Reserve on proper development, implementation, and use of risk models in lending.

Adverse Action Notices

This is important for model explainability and presents a challenge to many ML solutions. A model must be able to determine which key factors led to loan decision.

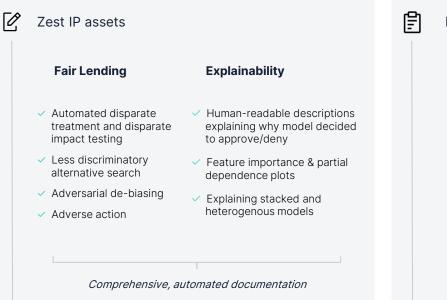
Fair Lending & Disparate Impact

This is important for model inputs and outcomes analyses to ensure a lender is not intentionally or inadvertently discriminating against a protected class.

MRM Criteria & Guidelines

This requires extensive documentation regarding how a model was built, including validation exercises. It also includes how the model will be implemented and managed. Plus, compliance officers require separate fairness documents to ensure satisfactory model management.

<u>Highly</u> differentiated intellectual property, with underlying tools accepted by regulators and lenders



- Regulator Acceptance
 - O Regulators deem Zest Al as the "Gold Standard" in ML
 - O Zest Al clients' have **passed risk management audits** with Federal regulators
 - O Zest AI is a **supervised service-provider to covered entities**, and is under the purview of the CFPB
 - O Zest AI has trained top bank examiners at FDIC, OCC, Fed Reserve, CFPB, and FHFA on how to examine ML models

Proof of Concept Model Results

ABC Credit Union

Data sheet to build preliminary model

Product Line Information Direct Auto	Portfolio Level Statistics	Credit Tier Stratification (Use your actual credit tiers)							
		A+	А	В	С	D	E		
	Portfolio Total	Super prime	Prime	Prime	Near Prime	Subprime	Subprime		
FICO/Vantage Score Range		720+	690-719	660-689	640-659/No score	600-639	<=599		
Total Annual Applications (#)	1774	1035	200	150	148	96	145		
Automated Decision %	0								
Total Annual Approved (#)	1299	877	169	106	68	54	46		
Total Annual Funded (#)	1276	867	139	106	66	51	45		
Total Annual Origination (\$)	\$ 27,455,511.39	\$ 20,225,509.27	\$ 2,926,577.71	\$ 1,923,112.39	\$ 991,069.75	\$ 747,754.44	\$ 641,487.83		
Average Funded Amount	\$ 21,516.85	\$ 23,247.21	\$ 21,054.52	\$ 18,142.57	\$ 15,016.21	\$ 14,661.85	\$ 14,579.27		
Average Interest rate charged	3.52	2.37	3.51	5.1	6.37	9.67	10.94		
Average Loan Term	63								
Average Loan life	24						*		

Product Line Information Indirect Auto	Portfolio Level Statistics	Credit Tier Stratification (Use your actual credit tiers)							
		A+	A	В	С	D	E		
	Portfolio Total	Super prime	Prime	Prime	Near Prime	Subprime	Subprime		
FICO/Vantage Score Range		720+	690-719	660-689	640-659/No score	600-639	<=599		
Total Annual Applications (#)	3369	966	315	381	470	466	771		
Automated Decision %	0								
Total Annual Approved (#)	1150	670	142	130	92	79	37		
Total Annual Funded (#)	710	336	93	80	76	63	62		
Total Annual Origination (\$)	\$ 18,146,720.00	\$ 8,869,221.00	\$ 2,678,208.00	\$ 2,146,759.00	\$ 1,585,391.00	\$ 1,493,228.00	\$ 1,373,912.00		
Average Funded Amount	\$ 25,416.00	\$ 26,396.00	\$ 28,798.00	\$ 26,834.00	\$ 22,051.00	\$ 23,702.00	\$ 22,160.00		
Average Interest rate charged	5.25	2.97	3.99	5.46	7.14	10.53	11.72		
Average Loan Term	67								
Average Loan life	29								

ABC CU's Automation Goals

- Saying "Yes" to more members
- More fairness to all members regardless of class
- Keeping risk constant in targeted lower tiers
- Compliant for all applicants

ABC CU Economic Analysis

Increase Approvals Safely

Using more data and better math

Results for ABC Credit Union

Expand Signal

280

~7

Features from raw credit report data allow for a more complete assessment of risk Grow Safely

19%

Weighted average additional approvals compared to the Benchmark without additional risk Increase Originations

\$86M

DD

Annual increase in originations from the Zest model thanks to 4,812 additional loans made per year Increase Value

\$4.5M

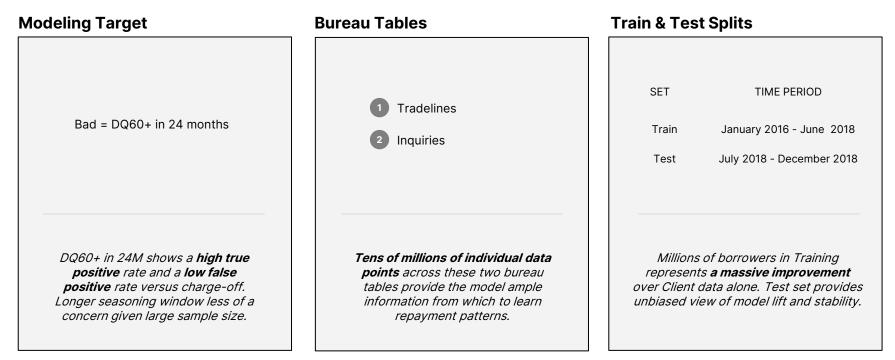
Additional interest income from the Zest model per annual vintage Auto-Decision

80%+

Power of Al model, better prediction of borrower risk and higher confidence to auto-decision

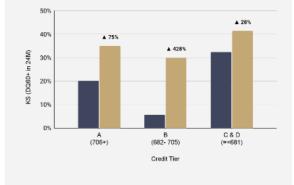
Model Inputs

Bureau-only model trained using over 1 million borrowers



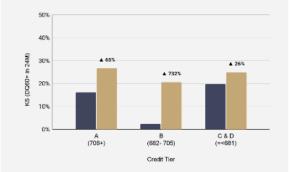
Statistical Accuracy

KS comparison indicates massive lift over the National Credit Score across credit tiers

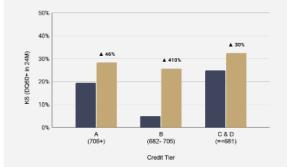


PERSONAL LOAN

Zest vs. National Credit Score



CREDIT CARD Zest vs. National Credit Score



LEGEND 🔵 National Credit Score 🛑 Zest

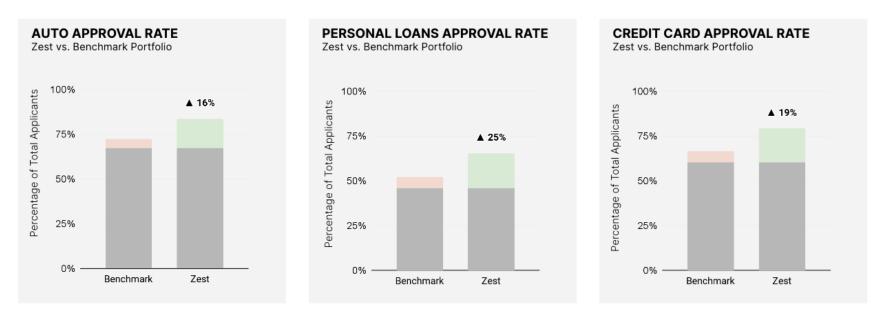
Approve more good borrowers

Economic value is estimated by comparing the size of the Benchmark portfolio to the Zest portfolio

By replacing high risk borrowers with low risk ones, you can approve significantly more borrowers without increasing risk.

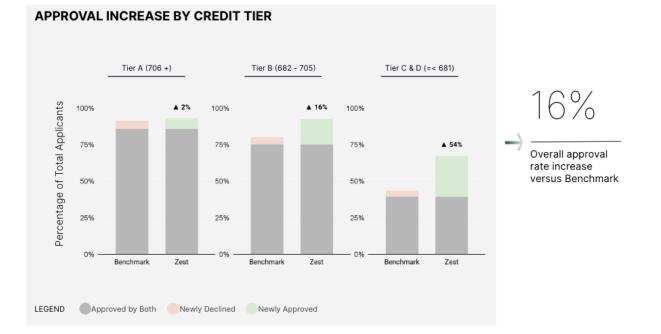
All Products: Approvals

Significant approvals across product portfolios while holding benchmark risk constant



Auto: Increase approvals by 16%

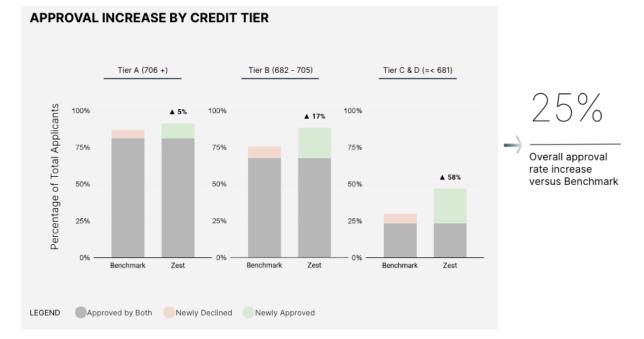
Holding risk constant, we calculate the auto approval rate increase per tier enabled by the Zest model



ZESTÒ

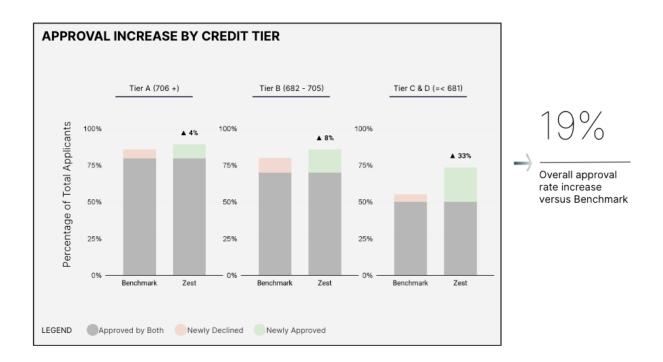
Personal: Increase approvals by 25%

Holding risk constant, we calculate the auto approval rate increase per tier enabled by the Zest model



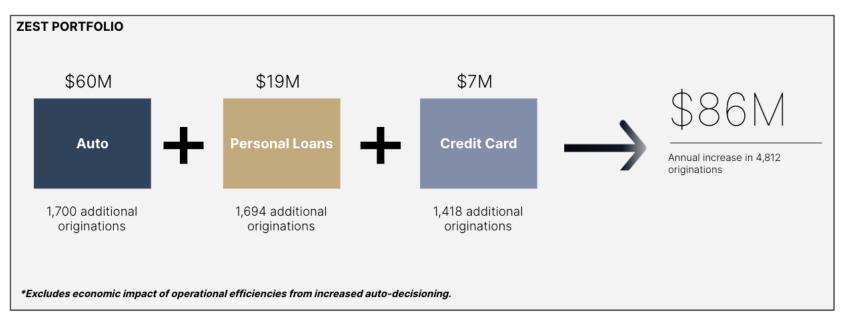
Credit Card: Increase approvals by 19%

Holding risk constant, we calculate the auto approval rate increase per tier enabled by the Zest model



ABC CU Says "Yes!" to more members

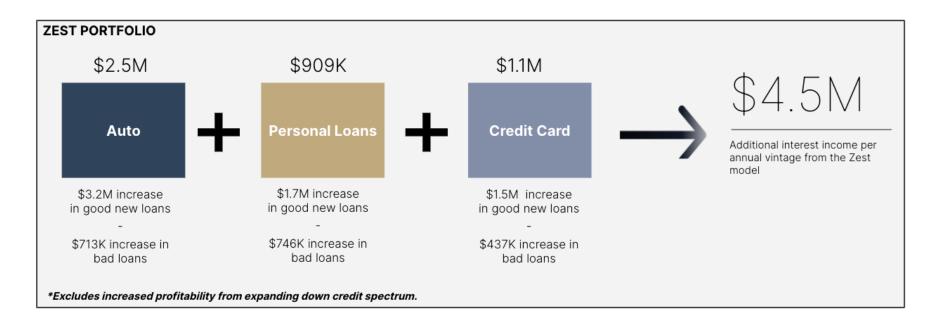
Approval increases across product portfolios equates to 4,812 more loans without increasing risk



Note: Applications figure based on EECU's data. Booking rates also assumed to be held constant.

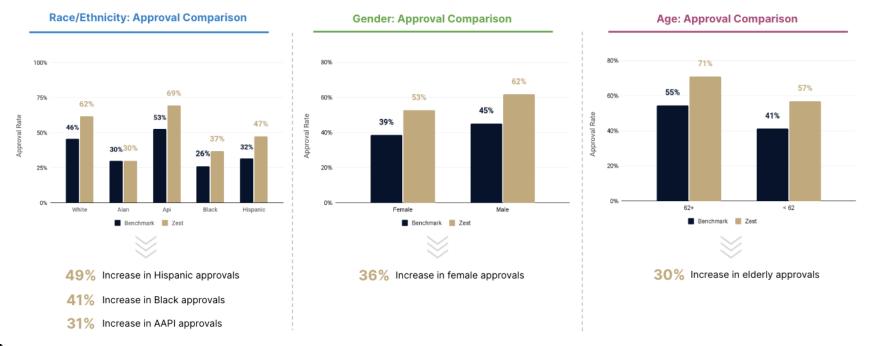
ABC Credit Union's Economic impact

We then measure the total economic impact of the approval increase in the auto, personal loans, and credit card portfolios



Automation increases ABC CU's approval rates for protected borrowers – with no increase in risk

Zest will increase Hispanic & Black approvals by +40% and Female approvals by 36%



POC Evaluation Process

- 1. Provide Zest with data sheet (1-3 days)
- 2. Zest builds auto decisioning model (30-days)
- 3. Present CU specific model to stakeholders (1 day)
- 4. If CU proceeds, we then enhance model with member specific data and historical [5 years] (30 days)
- 5. Integrate to LOS (2-15 days)

ZEST

Summary

Evaluating Auto Decisioning Solutions

- **Compliance** CFPB, ECOA, SR 11-7, FCRA
- PII- Protection of your members PII of being accessed off-shore or unkown by 3rd parties
- Data Consultants- Access to data consultants
- LOS Integration Partnership Agreements with LOS vendors or authorization to access LOS via API

Summary

- Al and ML are not robots, but the processing of more data with better math
- Implementing auto decisioning is NOT disruptive unlike a LOS or Core conversion
- Auto decisioning should be your CU's highest priority in 2022 so you can say yes to more members in 2023 and be well positioned for the uncertain times ahead

Questions?

Contact Craig Peterson cmp@zest.ai

Thank you

